
Dr. Marques Sophie Algebra 1 Spring Semester 2015
Office 519 marques@cims.nyu.edu

Midterm

The grader cannot be expected to work his way through a sprawling mess of identities
presented without a coherent narrative through line. If he can’t make sense of it in finite
time you could lose coherent narrative through line. If he can’t make sense of it in finite
time you could lose serious points. Coherent, readable exposition of your work is half the
job in mathematics.

Problem 1 :
By using the multiplication table, show that there is only one (up to iso-
morphism) group of order 3.

˚ e a b
e
a
b

Solution : Clearly a ˚ b “ e since if it’s a or b then it follows that b “ e or a “ e
respectively. Likewise, b ˚ a “ e. We need to determine what a ˚ a and b ˚ b are. a ˚ a
can’t be a since a ‰ e. If a ˚ a “ e then a ˚ a “ a ˚ b and it follows that a “ b. Therefore
a ˚ a “ b. Likewise, b ˚ b “ a.
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Problem 2 :

1.(a) Give the definition of a cyclic group.

(b) Give the definition of an commutative group.

(c) Show that every cyclic group is commutative.

2. Consider the group Z{16Z of residues modulo 16 (under addition mo-
dulo 16). How many subgroups does this group have ? Explain your
answer.

Solution :

1.(a) A group G is cyclic if there is an a P G such that

G “ tan : n P Zu

In other words, for any g P G, then there is an integer n (depending on g)
such that g “ an. In this case, a is said to generate G or to be a generator of
G. A group G is abelian if gh “ hg, for any g, h P G.

(b) Suppose G is cyclic and that a generates G. Let g, h P G. Thus there are integers
k and l such that g “ ak and h “ al. Hence

gh “ akal
“ ak`l

“ al`k
“ alak

“ hg

and so G is abelian.

2. The group Z{16Z is cyclic. From class, a finite cyclic group of order n has a
unique subgroup of order d for each (positive) divisor d of n and no other sub-
groups. Thus number of subgroups of Z{16Z is equal to the number of divisors of
16 which is 5.

Problem 3 :
Let

G “ t
ˆ

a b
0 1

˙

: a, b P Z with a “ ˘1u

1. Show that G is a group under matrix multiplication.

2. Is G abelian ? Explain your answer.

3. Describe all elements of order two in G.

Solution :

1. Let g “
ˆ

a b
0 1

˙

and g1 “
ˆ

c d
0 1

˙

be elements of G. Then

gg1 “
ˆ

a b
0 1

˙ ˆ

c d
0 1

˙

“

ˆ

ac ad` b
0 1

˙

Note ac “ ˘1 (since a “ ˘1 and c “ ˘1) and clearly ad` b P Z. Thus gg1 P G.
In other words, matrix multiplication defines a binary operation on G. This is
an associative operation (since matrix multiplication for matrices with integer
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entries is associative). The usual 2 ˆ 2 identity matrix I2 “

ˆ

1 0
0 1

˙

is an

identity element (since AI2 “ A “ I2A, for any 2 ˆ 2 matrix A with say integer

entries). For any g “
ˆ

a b
0 1

˙

in G, the matrix g is invertible with inverse

g´1 “

ˆ

1{a ´b{a
0 1

˙

(Check this !) Since a “ ˘1, we see that 1{a “ ˘1 and

´b{a P Z and thus the matrix g´1 belongs to G. This proves that G is a group
under matrix multiplication.

2. No, G is not abelian. For example,
ˆ

´1 1
0 1

˙ ˆ

1 1
0 1

˙

“

ˆ

´1 1
0 0

˙

while
ˆ

1 1
0 1

˙ ˆ

´1 1
0 1

˙

“

ˆ

´1 2
0 1

˙

so that
ˆ

´1 1
0 1

˙ ˆ

1 1
0 1

˙

‰

ˆ

1 1
0 1

˙ ˆ

´1 1
0 1

˙

3. An element

ˆ

a b
0 1

˙

in G has order two if and only if it not the identity and

ˆ

a b
0 1

˙ ˆ

a b
0 1

˙

“

ˆ

a2 ab` b
0 1

˙

“

ˆ

1 0
0 1

˙

So we must have a “ ˘1 and bpa`1q “ 0. Note b ‰ 0 implies a “?1. On the other
hand, b “ 0 and a “ 1 gives I2 which has order one, not two. Hence a “?1 for all
elements of order two. Thus the elements of order two are exactly the matrices
ˆ

´1 b
0 1

˙

as b varies through Z.

Problem 4 :

1. State Lagrange’s theorem.

2. Show that every group of prime order is cyclic.

3. The set of ordinary integers Z is a subgroup of the additive group of
rational numbers Q. Show that Z has infinite index in Q (that is, there
are infinitely many (left or right) cosets of Z in Q).

Solution :

1. Let G be a finite group and let H be a subgroup of G. Then the order of H divides
the order of G.
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2. Suppose |G| is prime. Let g P G with g ‰ 1. Then ă g ą“ tgn : n P Zu is
subgroup of G. By Lagrange ?s Theorem, | ă g ą | divides |G|. Note | ă g ą | ą 1
as g Pă g ą (and 1 Pă g ą). Since |G| is prime, it follows that | ă g ą | “ |G|.
Thus ă g ą“ G, and G is cyclic.

3. Let x, y P Q with 0 ď x ă 1 and 0 ď y ă 1. We have x `Z “ y `Z if and only
if x ´ y “ n, for some n P Z. Since x and y are each in the interval r0, 1q, this
is only possible if x “ y. Thus the cosets x `Z, for 0 ď x ă 1, form an infinite
family of distinct cosets of Z in Q. (In fact, these are all the cosets of Z in Q.)

Problem 5 :
Let G be a finite group, X be a set and G ˆ X Ñ X be a group action. Let
x0 P X.

1. Give the definition of the stabilizer Stabpx0q of x0.

2. Give the definition of the orbit Opx0q of x0.

3. Prove that

(1) ψ : G{Stabpx0q Ñ Opx0q where ψpg ¨ Stabpx0qq “ g¨x0

is a well define map.

4. Prove that ψ is a bijection.

5. Deduce that the size |Ox0 | of any individual orbit must divide |G|.
Solution : Let H “ StabGpx0q. There is a bijective correspondence between G{H “

txH : x P Gu and points in X, implemented by the map

(2) ψ : G{H Ñ X where ψpgHq “ g¨x0

This map is well-defined – i.e. if we take a different coset representative g1 such that
g1H “ gH, we still get ψpg1Hq “ ψpgHq. [We have g1H “ gH ô there is some h P H
such that g1 “ gh, but then

g1 ¨ x0 “ pghq ¨ x0 “ g ¨ ph ¨ x0q “ g ¨ x0 ,

since h ¨ x0 “ x0 by definition of the stabilizer H “ StabGpx0q.] Furthermore ψ is an
onto map because the action is transitive. [Given y P X there is some g P G such that
y “ g¨x0, and then ψpgHq “ g¨x0 “ y.] Finally, ψ is a one-to-one map (so ψ : G{H Ñ X
is a bijection). In fact, if ψpg1Hq “ ψpg2Hq we have g1 ¨ x0 “ g2 ¨ x0, which implies

that g´1
1 ¨ pg2 ¨ x0q “ pg´1

1 g2q ¨ x0 “ x0. Since g´1
1 g2 fixes x0 it is in StabGpx0q “ H ; thus

g´1
1 g2 “ h P H, and g2H “ pg1hqH “ g1H as required. Since ψ is a bijection we must

have |X| “ |G{H|. We finish the proof by applying Lagrange’s theorem, which says that
|G| “ |G{H| ¨ |H| for any subgroup.
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